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Analysis of Shielded Lossy Multilayered-Substrate
Microstrip Discontinuities

Essam S. Tony, Member, IEEE,and Sujeet K. Chaudhuri, Senior Member, IEEE

Abstract—The spatial Green’s function for a rectangular
cavity partially filled with multiple layers of lossy dielectrics
has been derived. The Green’s function is used to compute the
fields around a discontinuity in a transmission line. To analyze
a discontinuity, the unknown surface current maintained on the
microstrip discontinuity is expanded in terms of known suitable
basis functions. The electric-field components in the plane of the
discontinuity region are then written in terms of this current.
Imposing the boundary condition that the component of the
electric-field tangential to the metallization is zero yields the
electric-field integral equation (EFIE). The method of moments
is applied to the EFIE to obtain a system of linear equations.
The resultant semianalytical expressions were used to conduct
accurate modeling of a variety of structures. The validity and
accuracy of this method are established through comparison with
other published results. Convergence considerations are outlined
and verified.

I. INTRODUCTION

T HE problem of electromagnetic (EM) propagation in strat-
ified isotropic and anisotropic media have been studied ex-

tensively [1]–[3]. This effort has been devoted to the task of de-
signing monolithic microwave integrated circuits (MMICs) for
the use in the high-frequency ( GHz) region.

Initially, theoretical work on microstrip was primarily based
on quasi-TEM analysis. With this technique, equivalent circuits
were derived in terms of static capacitances and low-frequency
impedances. Wheeler [4], [5] was the first to evaluate the static
capacitance through conformal mapping and an effective dielec-
tric-constant approach. Other works for the static analysis of
gaps in microstrips [6], gaps and steps [7] and other microstrip
discontinuities [8], [10] followed. This method is valid only at
low frequencies, but it is the least computationally demanding
technique. Full-wave three-dimensional-discretization numer-
ical methods are considered the most versatile, as they are ap-
plicable to geometrically more complex structures at higher fre-
quencies. Some of these numerical methods are the method of
lines [11], [12], the finite-difference time-domain (FDTD) ap-
proach [13]–[15], and the transmission-line matrix method [16].
These methods, however, are quite costly in terms of their com-
putational requirements. Full-wave spectral- and spatial-domain
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techniques provide a tradeoff between speed of computation and
accuracy.

In most cases, MMICs with semiconductor substrates are
shielded in a metallic rectangular cavity given the brittle nature
of semiconductors and in order to isolate the circuit from
interaction with the surrounding environment. For this reason,
shielded metal–insulator–semiconductor (MIS) microstrip
structures are often found in MMICs. MIS technology is used
for the design of phase shifters, attenuators, and tunable filters
[17], [18], as well as modeling very high-speed very large scale
integration (VLSI) circuit interconnects [19], [20].

The effect of shielding on discontinuity characteristics can be
significant. Considerable effects occur when the circuit is oper-
ated at a frequency close to or above the cutoff frequency of the
higher order modes of the microstrip, which are essentially the
cavity modes of the shielding structure. These effects are also
observed when the shielding structure is close to the circuitry
[21].

The treatment proposed in [21] and [22] is intended primarily
for discontinuities of thin lines, as it considers only the axial
component for the current. The method proposed in [23] and
[24] is an efficient generalized technique for deriving the space-
domain Green’s function due to an arbitrarily oriented current in
a shielded two-layered isotropic substrate MIS structures. This
treatment considers both the axial and transverse currents and,
hence, it is suitable for the treatment of discontinuities in wider
lines. In this paper, the analysis presented in [24] is extended
for the case of multilayered lossy substrate. The validity of this
method is established through comparison with various pub-
lished data. The major advantages of this method are as follows.

1) It can accommodate arbitrarily oriented current densities.
2) It is a spatial-domain analysis that is particularly suitable

for highly lossy substrates.
3) As opposed to the spectral-domain techniques (SDTs),

the spatial dependence of the fields of the structure under
consideration are directly observable.

4) This method expresses all the unknown field amplitude
coefficients in terms of the amplitude coefficients at
only one layer of the substrate. Hence, regardless of the
number of substrate layers, all the unknown amplitude
coefficients can be evaluated by solving a 22 system
of equations. This provides an immense reduction in
the mathematical manipulation compared to other ap-
proaches.

The following two basic assumptions are made in the forth-
coming analysis.

• All conductor losses are ignored. For microstrip lines,
most of the fields are concentrated under the center
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Fig. 1. Schematic of an inhomogeneously partially filled rectangular cavity.

conductor, and fringe fields attenuate rapidly away from
it. Hence, losses in the shielding walls can be ignored.
Microstrip metallizations are mostly made of gold, which
is a very good conductor. Conductor losses are skin-effect
losses that are most significant at lower frequencies
( GHz). Gold conductor losses for a line of width
500 m is 0.01 dB/mm at 1 GHz [25]. For MIS structures,
this is a negligible quantity compared to the propagation
losses in the semiconductor substrates. Hence, the perfect
conductor assumption is justified.

• The thickness of the microstrip metallization is assumed
negligible. For an operating frequency of 20 GHz, the mi-
crowave wavelength in silicon is a few millimeters. A typ-
ical microstrip line thickness is 5m. Hence, the oper-
ating wavelength is at least a 1000 times bigger than the
conductor thickness. Hence, the zero conductor thickness
is justified.

II. GREEN’S FUNCTION FORMULATION

In what follows, a procedure for deriving the electrical
Green’s function for a multilayered structure is
presented. This general procedure could be applied to a wide
range of structures, e.g., an inhomogeneous dielectric-loaded
rectangular cavity, as depicted in Fig. 1. The figure shows a
cavity loaded with dielectric layers and contains a point

current source located at . In response to
this current source, an electric field is generated. This electric
field directly yields the electric Green’s function for the cavity

; for an arbitrary surface current , the electric
field anywhere within the cavity is given by

(1)

where is the area of the surface where exists. All
fields and sources are assumed to be time harmonic with a time
dependence . is given by

(2)

where the term is the component of the electric
Green’s function associated with thecomponent of the elec-
tric field in region due to the -directed component of the
infinitesimal electric surface-current source located at

. Other terms are defined similarly. The point
current source is defined as

(3)
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Fig. 2. Equivalent waveguide system that models an inhomogeneously loaded rectangular waveguide. The analysis uses a superposition of an equivalent set of
parallel-plate structures.

The analysis is carried out by employing the principle of scat-
tering superposition, which can be stated as follows. Assume
that the EM fields or potentials for a given boundary value
problem is known. If the boundary conditions change, the EM
fields that satisfy the boundary conditions for the new structure
are obtained by a superposition of the original known fields and
a scattered one, which has the same spatial dependence as the
original fields, but with unknown amplitudes. Imposing the new
boundary conditions yield these unknown amplitudes. In Fig. 2,
it is assumed that we have a certain boundary value problem
depicted in Fig. 2(b). The solution to this problem is given by
the primary fields and . The boundary conditions are
then changed by adding a set of layers of dielectrics and a
bottom conducting wall [see Fig. 2(d)]. As a result, the fields in
the overall guide change. This change is represented by a set of
added fields and .

The procedure for deriving the Green’s function for the cavity
problem is mostly identical to that of the two-dimensional rect-
angular waveguide problem reported in [26], which was con-
ducted to compute the propagation and dispersion characteris-
tics of a uniform transmission line situated on top of lossy sub-
strate comprised of layers enclosed in a shielding rectangular
waveguide. For the sake of brevity, this analysis will not be re-
produced here. Using a similar approach, the Green’s function
for the cavity structure of Fig. 1 can be derived. For computing
the fields around the discontinuity, only the Green’s function
in the region above the metallization or the Green’s func-
tion in the region just below the metallization is required.
The Green’s function will be used to derive the electric fields
tangential to the plane of the discontinuity. Hence, the evalu-
ation of and is unnecessary. The mathematical
task reduced to obtaining the remaining four components of
the Green’s function dyad: , , , and .
These are found to be

(4)

(5)

(6)

(7)

where

(8)

(9)

(10)

and

(11)

where is defined as

if
if

(12)

, , , and are given by

(13)

(14)

(15)

and

(16)

where

(17)

(18)
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Fig. 3. Discretization of the discontinuity plane (x = x plane).

(19)

(20)

The terms , , , and are related recursively to
, , , and through

(21)

(22)

(23)

and

(24)

where

(25)

(26)

(27)

and

(28)

III. M ODELING OF MICROSTRIPDISCONTINUITIES

Consider now a certain metallization layout of arbitrary
shape, perfect conductivity, and negligible thickness situated on
top of the layers of dielectrics. Consider a discontinuity in
the metallization such as the series gap discontinuity depicted
in Fig. 1. Again, as a result of adding this conducting geometry,
the boundary conditions of the original cavity problem will
change. Using the cavity Green’s functions obtained earlier and
using the current distribution on the metallization, the electric
field is recalculated from the definition of electric Green’s
function subject to a new boundary condition; the tangential
component of the electric field must vanish on the metallic
strip.

The surface-current distribution for the discontinuity is un-
known and is expressed in terms of a series of known basis func-
tions with unknown amplitude coefficients. The electric field
in the plane of the metallization is expressed in terms of these
basis functions. Enforcing the boundary condition that
on the metallization yields a system of linear equations whose
unknowns are those unknown amplitude coefficients.

The surface-current density distribution is cast in the form

(29)

and

(30)

where and are basis function
expansions for and , respectively, with

and being the unknown amplitude coefficients
of and , respectively. and are the
summation integral indexes. The cavity dimensionsand are
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partitioned into and segments, each of length
or , respectively (see Fig. 3). The basis functions define the
shape of the current within each subsection. Functions
and are defined as

if

if

elsewhere
(31)

and

if

elsewhere.
(32)

and are the basis function wavenumbers. The above ex-
pansions and shaping functions have been previously applied to
the problem of modeling microstrip discontinuities with excel-
lent results obtained [24], [27]. The shape functions account for
the edge effect on the current distribution. The coordinates
and assume the following discrete coordinate values [28]:

in

in
(33)

in

in
(34)

Since only the tangential component of the electric field is of
interest at this point, only this component of the field will be
evaluated. Those are the and components, which can be
expressed in the form of two coupled integral equations

(35)

(36)

where, e.g., is given by

(37)

The superscript denotes the air-filled region of width
above the cavity, as shown in Fig. 1. Expressions for , ,

, and were derived in (4)–(7) and the expressions for
and are given in (29) and (30) respectively.

Hence, one arrives at [26]

(38)

(39)

(40)

(41)

IV. M ETHOD OFMOMENTS

The electric-field components and due to an
arbitrary surface-current density distribution have been found.
Enforcing the boundary condition on the perfectly
conducting metallization yields the unknown amplitude coeffi-
cients. An equivalent boundary condition is that the conduction
surface current and the tangential electric field are complemen-
tary quantities in the plane. Hence,

(42)

In a more explicit form

(43)
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and

(44)

where is a segment on the plane with dimensions
and in the - and -directions, respectively. Writing the above
equations in the following short form:

(45)

(46)

(47)

and

(48)

the system of equations (43) and (44) can be written in the fol-
lowing matrix form:

(49)

The elements of the left-hand-side (LHS) matrix of the
above system need not be evaluated at all segments
of the plane . The coefficients matrix can be
evaluated only for the metallized segments of that plane
since the conduction current is, by definition, zero every-
where else. Using (38)–(41) in (45)–(48), the coefficients

and
are obtained as [26]

(50)

(51)

(52)

and

(53)

The summation over and is truncated at
and , respectively. The truncation at and is
chosen such that the retained terms provide sufficiently accurate
results. Criteria for choosing and are presented later.

The matrix of (49) is a system of linear equations obtained
from the boundary condition of equation (42). It follows that the
right-hand side (RHS) of the system (49) is a vector of zeros.
However, that boundary condition is violated at one or more
points to provide an excitation to the system. Hence,
and are termed the excitation vectors. For a given exci-
tation vector, a certain current distribution is maintained on the
metallization. That distribution is given by the amplitude coeffi-
cients and . The point at which
or is called the gap generator. Hence, and

are defined as [29]

if
elsewhere on the metallization

(54)

if
elsewhere on the metallization.

(55)

The gap generator excitation method [30], [29] is a nonphys-
ical mathematical tool to excite the circuit. Another technique
to excite the circuit is the cavity resonance technique [31], [32],
which, again, is a pure mathematical tool. A coaxial excitation
method is developed in [22], which has its physical foundation
in modeling the feed current of a coaxial line leading to the mi-
crostrip. The end result, however, is independent of the excita-
tion method.
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V. NUMERICAL IMPLEMENTATION

A. Matrix Computation and Inversion

It is important to note the following symmetries in the
impedance matrix:

(56)

(57)

and

(58)

These symmetries are utilized to reduce the computational ef-
fort in the calculation of matrix elements by about 50% [To be
exact, the ratio of the number of elements that needs to be eval-
uated to the total number of elements in the matrix is reduced
to ]. Based on computational experiences, com-
puting the matrix elements consumes over 99% of the compu-
tation time, with the remaining 1% used for the matrix solution.
These symmetries also reduce the size of the storage array in
half.

For the case of a narrow strip of metallization along the
-axis, and where the discontinuity does not lead to a large
-directed current, a subset of this matrix can be used. For

example, when characterizing a series gap discontinuity in a
thin transmission line, the component of current was found
to be of negligible magnitude compared to thecomponent.
Hence, it is sufficient to only consider the problem

(59)

B. Parameters Extraction

It is assumed that a uniform transmission line feeds a dis-
continuity from all ports. For a two-port problem, the longitu-
dinal currents and on ports 1 and 2 are evaluated using

by a transverse integration. At the input port, on a uni-
form transmission line, an ideal transmission-line current exists
as long as the operating frequency is below the cutoff frequency
of the shielding cavity. Thus, the current distribution obtained
can be fit to a transmission-line current model to obtain the
scattering parameters. The current distribution obtained behaves
like a transmission-line model away from the excitation point
and the discontinuity itself (say, by a distance of
from each).

An ideal transmission line current is given by

(60)

where is the incident current, is the reflected current,
and is the complex propagation constant. The optimization
routine used for the fitting purpose is L-BFGS-B [33]. The error
function supplied to the routine for minimization is

(61)

Minimizing this error function yields the unknown parameters
in (60), namely, , and . A strength of this theory is that
it does not require the knowledge of on the feed transmission
lines to solve the discontinuity problem. From the information
obtained by the optimization routine, the voltage reflection co-
efficient for the input port is

(62)

where is the reference plane distance.

C. Scattering and Impedance Matrices

For a one-port discontinuity, the scattering parameter
is given by the reflection coefficient in (62). For a symmetric
two-port geometry, two excitations are required: an even and
odd excitation. For an even excitation, the gap generators of
(55) are equal to one on both ends, and zero everywhere else on
the metallization. For an odd excitation, the gap generator of
(55) is equal to one at one end and to1 at the other end. Using
these two excitations, two different reflection coefficients are
computed: and . The normalized input impedance
for the even and odd excitations are given by

(63)

(64)

From microwave-circuit theory, and considering a two-port
network symmetric impedance matrix representation, the
following relationships are obtained:

(65)

(66)

The scattering matrix is related to the impedance matrix
through

(67)

(68)

D. Convergence Consideration

Detailed convergence and verification studies were con-
ducted in [24] for the same theory, but for the special case of a
two-layered substrate. These were also conducted in [21] for a
closely related analysis. These criteria were tested and verified
in the current analysis for the case of-layered substrate.
For discontinuity analysis, the convergence criteria depend
on the modal summation limits and , the subsection
highest indexes and , the cavity dimensions, , and , the
subsection lengths and , and the subsection wavenumbers

and . These convergence criteria can be summarized as
follows.
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Fig. 4. Propagation constant� (m ) versus frequencyf (GHz) for a
uniform transmission line. Comparison of the results obtained via the MoM
presented in this paper and that obtained via direct dispersion analysis [26].
MoM computation conducted usingM � N = 300 � 300 modes. Direct
dispersion analysis [26] is conducted for two cases:M = 2200 modes and
5000 modes. Transmission-line parameters are: widthW = 0:5 mm, shield
dimensions:a = 6 mm, andb = 1:5 mm. The substrate is comprised of two
layers, one with a thickness 0.2 mm,� = 12 and� = 1:2 
 � m and below it
an insulating layer of thickness 0.2 mm and� = 12.

1) The dimensions of the enclosing cavity must be such that
its lowest cutoff frequency is higher than the highest fre-
quency with which the discontinuity is excited. Other-
wise, if the cavity were to resonate at a certain frequency,
coupling could occur between the microstrip circuit and
resonant cavity.

2) Based on extensive numerical testing carried out in [21],
choosing the subsection wavenumbersand to be ap-
proximately equal to the phase constant of the microstrip
feed lines yield the best results.

3) To guarantee convergent accurate results, and due to the
nature of the overlapping sinusoidal basis functions, the
maximum value for and is governed by

.
4) Based on computing experience, the relationship between

the modal summation limits and and the subsection
highest indexes and should be and

. The same criterion was observed in [22] and [34].
5) For accurate results, the values ofand should be

such that , where is the
guided wavelength. If and are greater than ,
inaccurate results for the current distribution are obtained
due to insufficient sampling points per wavelength. If

Fig. 5. Attenuation constant� (m ) versus frequencyf (GHz). The analysis
presented in this paper (i.e., MoM) is compared to that of [26]. All parameters
are as per Fig. 4.

are smaller than , inaccurate results for
the current distribution are again obtained. This time, the
source of error is that the adjacent matrix elements of (49)
have very close values, leading to a reduced numerical ac-
curacy during the matrix solution. This condition is not
absolute, but recommended.

VI. M ODEL VERIFICATION AND EXAMPLES

In this section, the current method of moments (MoM) anal-
ysis is verified using a uniform transmission-line problem. This
analysis is compared to the dispersion analysis for a uniform
transmission line reported in [26]. A discontinuity in the same
transmission line is then considered. As an example of a discon-
tinuity, a series gap is studied as per Fig. 1. The discontinuity
results are compared to a quasi-TEM analysis [6].

Fig. 4 depicts the frequency dependence of the propa-
gation constant for a uniform transmission line of width

mm and a silicon substrate of thickness 0.4 mm.
The substrate is comprised of two layers, one with a relative
permittivity , resistivity m, and a thick-
ness of 0.2 mm, and beneath it there is an insulating layer
of relative permittivity . The shielding rectangular
waveguide dimensions are mm and mm. First,
computation were conducted using the dispersion analysis for
a uniform transmission line reported in [26]. Two values for
the summation index were considered: modes
and modes. The two results fully overlap. The
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Fig. 6. Axial currentI (z) versusz atf = 9 GHz for an even excitation. All
parameters as per Fig. 4.

Fig. 7. Scattering matrix elementsS andS versus frequencyf (GHz). All
parameters are as per Fig. 4.

attenuation constant versus frequency for this transmission
line is shown in Fig. 5.

Fig. 8. The phase ofS andS of the gap versus frequencyf (GHz). All
parameters are as per Fig. 4.

Fig. 9. Scattering matrix elementsS andS versus gap lengthG (mm) at
f = 20 GHz. All parameters are as per Fig. 4.

Second, the analysis presented here was utilized to study the
same uniform transmission line. The numerical computation is
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Fig. 10. Deembedded scattering matrix elementsS and S of the gap
versus frequencyf (GHz). All parameters are as per Fig. 4.

conducted using and for a cavity of length
mm, with subsection discretization of and

. Results are also shown in Figs. 4 and 5. Minor deviations
between the two theories are attributed to the difference between
the two-dimensional uniform transmission-line model of [26],
as compared to the three-dimensional short transmission line
enclosed in the cavity, as modeled by the current MoM theory.

A typical axial current distribution along the propaga-
tion direction at GHz for the given transmission line
with a series gap of length 0.1 mm is shown in Fig. 6 for the case
of even excitation. The real component of the current is the one
associated with the loss in the transmission line. For a lossless
transmission line, the axial current is 90out of phase with the
excitation.

The magnitude of the scattering matrix elementsand
versus frequency is shown in Fig. 7 for the case of a series gap
of length 0.1 mm in the middle of the transmission. The phase of

and versus frequency is depicted in Fig. 8. The magni-
tude of and versus the gap length for a fixed frequency
of 20 GHz for a variety of substrate conductivities is shown in
Fig. 9.

The scattering matrix elements for the gap are deembedded
from the data of Figs. 7 and 8 by placing the reference planes
on both sides of the discontinuity at a distance 1.05 mm from
the center of the discontinuity. These results are depicted in
Fig. 10. Comparisons with results obtained using a quasi-TEM
theory for modeling the gap [6] are also depicted in Fig. 10.
Quasi-TEM analysis shows a good agreement with the current
full-wave analysis up to about 10 GHz. At higher frequencies,

quasi-TEM analysis becomes less accurate, as it underestimates
the coupling through the gap.

VII. CONCLUSION

In this paper, a rigorous theory for analyzing discontinuities
in a shielded transmission-line structures has been developed.
This analysis can model multilayered lossy substrates and
multiconductor structures. The analysis is based on a Green’s
function formulation in the space domain. This was achieved
through an extension of an analytical approach reported earlier
in the literature for a two-layered substrate [24]. A notable
strength of this approach is that the mathematical complexity
of the problem does not greatly increase with the number of
substrate layers. The validity and accuracy of this method
were established through comparison with other modeling
approaches. Convergence criteria are outlined and verified.
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