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Analysis of Shielded Lossy Multilayered-Substrate
Microstrip Discontinuities

Essam S. TonyMember, IEEEand Sujeet K. Chaudhyrgenior Member, IEEE

Abstract—The spatial Green’s function for a rectangular techniques provide atradeoff between speed of computation and
cavity partially filed with multiple layers of lossy dielectrics  accuracy.
has been derived. The Green’s function is used to compute the |, most cases. MMICs with semiconductor substrates are
fields around a discontinuity in a transmission line. To analyze . . - o :
a discontinuity, the unknown surface current maintained on the Sh'elde(_j in a metallic rect_angular Cav't_y given the brlttlg nature
microstrip discontinuity is expanded in terms of known suitable Of semiconductors and in order to isolate the circuit from
basis functions. The electric-field components in the plane of the interaction with the surrounding environment. For this reason,
discontinuity region are then written in terms of this current.  shielded metal-insulator—semiconductor (MIS) microstrip
Imposing the boundary condition that the component of the g4 ctyres are often found in MMICs. MIS technology is used

electric-field tangential to the metallization is zero yields the . . i
electric-field integral equation (EFIE). The method of moments for the design of phase shifters, attenuators, and tunable filters

is applied to the EFIE to obtain a system of linear equations. [17], [18], as well as modeling very high-speed very large scale
The resultant semianalytical expressions were used to conduct integration (VLSI) circuit interconnects [19], [20].

accurate modeling of a variety of structures. The validity and  The effect of shielding on discontinuity characteristics can be
accuracy of this method are established through comparison with gy nificant. Considerable effects occur when the circuit is oper-
other published results. Convergence considerations are outlined
and verified. ated at a frequency close to or above the cutoff frequency of the
higher order modes of the microstrip, which are essentially the
cavity modes of the shielding structure. These effects are also
observed when the shielding structure is close to the circuitry
HE problem of electromagnetic (EM) propagation in straf21].
ified isotropic and anisotropic media have been studied ex-The treatment proposed in [21] and [22] is intended primarily
tensively [1]-[3]. This effort has been devoted to the task of déor discontinuities of thin lines, as it considers only the axial
signing monolithic microwave integrated circuits (MMICs) forcomponent for the current. The method proposed in [23] and
the use in the high-frequency (> 20 GHz) region. [24] is an efficient generalized technique for deriving the space-
Initially, theoretical work on microstrip was primarily basettiomain Green’s function due to an arbitrarily oriented currentin
on quasi-TEM analysis. With this technique, equivalent circuitsshielded two-layered isotropic substrate MIS structures. This
were derived in terms of static capacitances and low-frequernegatment considers both the axial and transverse currents and,
impedances. Wheeler [4], [5] was the first to evaluate the stakience, it is suitable for the treatment of discontinuities in wider
capacitance through conformal mapping and an effective dieldiges. In this paper, the analysis presented in [24] is extended
tric-constant approach. Other works for the static analysis fefr the case of multilayered lossy substrate. The validity of this
gaps in microstrips [6], gaps and steps [7] and other microstrifethod is established through comparison with various pub-
discontinuities [8], [10] followed. This method is valid only atiished data. The major advantages of this method are as follows.
low frequencies, but it is the least computationally demanding 1) |t can accommodate arbitrarily oriented current densities.
technique. Full-wave three-dimensional-discretization numer- 2) ltis a spatial-domain analysis that is particularly suitable
ical methods are considered the most versatile, as they are ap- for highly lossy substrates.
plicable to geometrically more complex structures at higher fre- 3y Ag opposed to the spectral-domain techniques (SDTs),
quencies. Some of these numerical methods are the method of  ne spatial dependence of the fields of the structure under
lines [11], [12], the finite-difference time-domain (FDTD) ap- consideration are directly observable.

These methods, however, are quite costly in terms of their com- ~ qefficients in terms of the amplitude coefficients at
putational requirements. Full-wave spectral- and spatial-domain gy one layer of the substrate. Hence, regardless of the
number of substrate layers, all the unknown amplitude
. . coefficients can be evaluated by solving &2 system
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Fig. 1. Schematic of an inhomogeneously partially filled rectangular cavity.

conductor, and fringe fields attenuate rapidly away frormourrent sourcefs(r’) located at(xzo1, ¥/, 2'). In response to

it. Hence, losses in the shielding walls can be ignorethis current source, an electric field is generated. This electric
Microstrip metallizations are mostly made of gold, whicliield directly yields the electric Green’s function for the cavity
is a very good conductor. Conductor losses are skin-effag(7, #/); for an arbitrary surface current,(+'), the electric
losses that are most significant at lower frequencidi®ld anywhere within the cavity is given by

(f € 2 GHz). Gold conductor losses for a line of width

500mis 0.01 dB/mm at 1 GHz [25]. For MIS structures, E(7) = —jwio // G(7, 7'y - T
this is a negligible quantity compared to the propagation

losses in the semiconductor substrates. Hence, the perfect . - o .
PelReres is the area of the surface where(r’) ds’ exists. All

conductor assumption is justified. fields and sources are assumed to be time harmonic with a time
« The thickness of the microstrip metallization is assumedae

jwt = =2 H
negligible. For an operating frequency of 20 GHz, the ml_ependencef G, ™) Is given by

-
N

7

yas' (D)

crowave wavelength in silicon is a few millimeters. AtYp-Si/ = =1\ _ 2o Ri (= =1\ | ssd¥i (= 2\ L snddi (2 =1
ical microstrip line thickness is mm. Hence, the oper- G ) = xyG’”ZQ’ ! )+$2Gmi<7’ ")+ GZ’EQ’ ™)
ating wavelength is at least a 1000 times bigger than the +HERG (7, 7)) + GG (7, 7)) + 22GL (7, 7)
conductor thickness. Hence, the zero conductor thickness (2)
is justified.

where the term@;y(ﬁ 7' is the component of the electric
Green'’s function associated with tliecomponent of the elec-
tric field in region: due to they-directed component of the

In what follows, a procedure for deriving the ebctricaﬁnfinitesimal/ eltlactric surface-current .sourdg(r_’) located at
Green’s function G(r, /) for a multilayered structure is \* = %01 ¥ Z)- ?t_herte_rms are defined similarly. The point
presented. This general procedure could be applied to a wiggrent source/, (') is defined as
range of structures, e.g., an inhomogeneous dielectric-loaded | R R , PR
rectangular cavity, as depicted in Fig. 1. The figure shows 4s(r) =9y +2J. = [6(w—x01)6(y—y Vo(z—= )} (5+2).
cavity loaded withN dielectric layers and contains a point 3

Il. GREEN S FUNCTION FORMULATION
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Fig. 2. Equivalent waveguide system that models an inhomogeneously loaded rectangular waveguide. The analysis uses a superposition of set @juivalen
parallel-plate structures.

The analysis is carried out by employing the principle of scat- GO = E ’ E 99 (x)sin (@)
. o : 24 ( b
tering superposition, which can be stated as follows. Assume

that the EM fields or potentials for a given boundary value mmy nrz\ . [nwi
problem is known. If the boundary conditions change, the EM s cos < b ) cos ( ) sin < ) (6)
fields that satisfy the boundary conditions for the new structure GO — ©) mmy

are obtained by a superposition of the original known fields and Z Z 9zz,, (%) S0 (—)

a scattered one, which has the same spatial dependence as the , ,

original fields, but with unknown amplitudes. Imposing the new - sin <m7ry ) oS (”m) COS <”m ) @)
boundary conditions yield these unknown amplitudes. In Fig. 2, b ¢ ¢

it is assumed that we have a certain boundary value probleyhere

depicted in Fig. 2(b). The solution to this problem is given by e 2 N 2

the primary fieldsE, and H,,. The boundary conditions are 655 (%) =com [(T) T— (7) TE($01):| Clz) (8)
then changed by adding a set&flayers of dielectrics and a

m n
bottom conducting wall [see Fig. 2(d)]. As a result, the fields ig\2 (z) =2 (Tﬂ) (%) (11 +Te(z01)]C(x) )
the overall guide change. This change is represented by a set @j‘) (@) =9 () (10)
added fields&; and H. 92 T = Gz,

The procedure for deriving the Green'’s function for the cavi@”d
problem is mostly identical to that of the two-dimensional recty© (;) =, [(T) T, — (mﬂ) TE(JCOI)} C(x)  (11)
angular waveguide problem reported in [26], which was con- ¢ b
ducted to compute the propagation and dispersion characteyigeres,, is defined as

tics of a uniform transmission line situated on top of lossy sub- .
X : C 1, ifr=0
strate comprised aV layers enclosed in a shielding rectangular €or =9 9 > 1 (12)
waveguide. For the sake of brevity, this analysis will not be re- ’ =
produced here. Using a similar approach, the Green’s functidh, C(x), T, and7x are given by
for the cavity structure of Fig. 1 can be derived. For computing 1
the fields around the discontinuity, only the Green’s function T = 2 [kéo)kg)TM(xm)} (13)
in the region(0) above the metallization or the Green'’s func- ° )
tion in the region(1) just below the metallization is required. (z) = 1 sin ks~ (a — x) (14)
The Green'’s function will be used to derive the electric fields b (E)Q 4 2| cos kéo)(a — Zo1)
tangential to the plane of the discontinuity. Hence, the evalu- 2 =
ation of G,,'” and@,..(*) is unnecessary. The mathematical -1
task reduced to obtaining the remaining four components of Tha(wor) = a (15)
: i S O a0 o © © EP (1 — 225 tan £ 4
the Green’s function dyads,,*”, G,."", G.,*”, andG.."". agy T A Re o
These are found to be q
0) _ 0 mny an
6y =2 Xl () eos (%) !
mry'\ | (mrz> . nmd EO 4 22 o0 1O do
- cos sin sin 4) bio
b c c

GO — Z Z 0 ()cos (@) where
b ara = kW (Klp sin kM dy — K cos kY dl) 17)

o (mmy'\ . /nwz nwz'
-sm< 2 )sm( . )cos< . ) ©) az =, (Klp cos k§ dy + Ky sin k(Y dl) (18)




704

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 4, APRIL 2001

Z-axis

port 1 Iz

y-axis

Fig. 3. Discretization of the discontinuity plane & x4, plane).

bia = (Rls sin /{}7(,,1) di + Rlc Ccos ]{}7(,,1) dl) (19)
byy = k() (Rls cos kM dy — Ry, sin k(D dl) . (20)

The termsR; ,, R;,, K1,, and K;_ are related recursively to
RNfls ) .R]\rflC ) KNfls ) andKN,lc through

Ko, = £ 16 o (90) - 16, s (1,9,
(21)
Ki, = :_1 [K sin (k;”di) + K;. cos (k;”di)} (22)

Ri_i = [Ris sin (k;” d,;) +R; cos (/fg) d,;)} (23)

and
B | ‘
Ry = [Ris cos (k;” di) _ R, sin (k;” di)}
'™
(24)
where
Ko, = 2 cos (KVn o, ) (25)
—1
(N)
Ky 1, = sin (k(N)-TN—l N) (26)
< T LD z :
kY :
By, = W Cos (kg(c]\)xN—l,N) (27)
and
RN—IC = sin (kiN)a:N_L N) . (28)

y=b =FPpax!y
z=c=Q I

max "z

~——port2

Microstrip Discontinuity

Consider now a certain metallization layout of arbitrary
shape, perfect conductivity, and negligible thickness situated on
top of the NV layers of dielectrics. Consider a discontinuity in
the metallization such as the series gap discontinuity depicted
in Fig. 1. Again, as a result of adding this conducting geometry,
the boundary conditions of the original cavity problem will
change. Using the cavity Green’s functions obtained earlier and
using the current distribution on the metallization, the electric
field is recalculated from the definition of electric Green’s
function subject to a new boundary condition; the tangential
component of the electric field must vanish on the metallic
strip.

The surface-current distribution for the discontinuity is un-
known and is expressed in terms of a series of known basis func-
tions with unknown amplitude coefficients. The electric field
in the plane of the metallization is expressed in terms of these
basis functions. Enforcing the boundary condition that 0
on the metallization yields a system of linear equations whose
unknowns are those unknown amplitude coefficients.

The surface-current density distribution is cast in the form

Z Z Yp' g fp (Z/) (29)

M ODELING OF MICROSTRIPDISCONTINUITIES

and
(30)

V/) = Z Z Izp’q’gp, (y fq’ (Z/)
2
where £, (v)g,(2") and f,(2")g,(y') are basis function
expansions forJ,(y/, z/) and J.(y', z’), respectively, with
Iy Ly and Ih L bemg the unknown amplitude coefficients
of J Wy, 2) "and J. (¢, 2’), respectively.p’ and ¢’ are the
summauon integral mdexes. The cavity dimensibasdc are
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partitioned iNtoPy,., and Qu... segments, each of length EY = — jop,l,l. Z Z iy Z Z g%?
or [, respectively (see Fig. 3). The basis functions define the m

shape of the current within each subsection. Functjfyns’) ] mwzy
andg, (v') are defined as sme oy o l.
- | ——————=sinc [(— + hz> —4}
sin b (zg41 — 2') . , sinc(hl.) 2
snhl 0 A SESAn
— : . lz . 4
fq’(zl) =4 sin h;.(z/h_lzq’fl)7 if 2 < 2 < 2y -sinc {(n% — hz) 5} sin (—mzyp )
11 iy
0, elsewhere - cos (mzq ) cos (?) sin (er) (39)
(31) o o
and Eéy) = _quol l Z Z Yprg/ Z ggy)'m,n
l I,
1 ifyy — L <y <ypy+2 l
g (y) = ’ Yy 2 - Y=Yt 2 (32) Slllc mr L,
0, elsewhere. . smc ™+ h, )
sin ¢ hy 2
h. andh, are the basis function wavenumbers. The above ex-
pansions and shaping functions have been previously applied to ll mﬂy ,
the problem of modeling microstrip discontinuities with excel- Slnc —hy 5‘/ b — )
lent results obtained [24], [27]. The shape functions account for T Ty Nz
the edge effect on the current distribution. The coordingjes - sin ( - s ) sin (T) cos ( - ) (40)
andz, assume the following discrete coordinate values [28]: .
4 9 [28] EO = — jupel,l. Z Z L., Z Z 92 .
p/ly, in Jy(ylv ') o
;= 1 . ,
" <p/ * 5)@, n 2 ) ) e [ 2zﬂ !
nmw z
—_— sin ¢ — 4+ h»/) —
1 : sine(h.l,) [( ¢ i 2}
! - !
2y = q+ 2)lm in Jy(y ) Z ) (34)
q'ly, inJ.(y, 2). ) [ n l;} . (MTYy
-sin e (——h)— m( )
Since only the tangential component of the electric field is of ¢ 2 b
interest at this point, only this component of the field will be - cos (mrz‘l' ) sin (%) coS (mrz) . (4D
C C

evaluated. Those are tlig, and £. components, which can be
expressed in the form of two coupled integral equations

EY =EY) + EY (35) IV. METHOD OF MOMENTS
EQ =EY + EY (36)  The electric-field component&” and E{” due to an
©) i arbitrary surface-current density dlstribution have been found.
where, e.g.Ey, is given by Enforcing the boundary conditioB:., = 0 on the perfectly
© ) © R conducting metallization yields the unknown amplitude coeffi-
Ey) = —jop // GyyJy(y, 2) dy' d2'. (37)  cients. An equivalent boundary condition is that the conduction

_ o _ _ surface current and the tangential electric field are complemen-
The superscript0) denotes the air-filled region of widthy  tary quantities in the: = z; plane. Hence,

above the cavity, as shown in Fig. 1. Expressmnsﬁfb} fo?,

G, andG were derived in (4)(7) and the expressions for . .
J, (', 2"y andJ.(y/, ') are given in (29) and (30) respectively. // EDJy dydz]e—s,, = // EDJ. dydz|y—s,, =0.

Hence, one arrives at [26] (42)
EO = — jwul,l. I (0) .
vy JWHoty ; zq: Ypta! zm: zn: I In a more explicit form
g [mrlz}
nc
2c , mm Ly / / EO.J, dydz = / / E,(,O) —|—E@} J, dy dz
smc{(T—i—hy) 5} U N vz | Ty A

sin c(hyly)

/ / E [o(y)gq(z) dy dz
. mim ly mnip
.sinc |:(T — hy) 5:| Ccos (T) // E'(O) (z) dydz
As

-sin (nwczqr ) cos (%) sin (n—:?) (38) (43)
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and Zy.(p, 0, V', 4)
/ Ego) J.dydz = / [EE?,) + EEQ)} J. dydz B mifw "55\ ©) smc smc )
As As - e L 9y sin ¢( h l sinc(h.l,)
= //A Eég)gp(y)fq(z) dy dz

*//ASE(O p(0)f(2) dy dz '[Smc«b ) )“ ) }
—0 (44) -[anc((l ) )Smc<(%_ ) )}

. . . . . TYp' N2y mmy nmwz
whereAs is a segment on the plane= x4, with dimensions,, - sin ( b ) cos ( - ) cos ( ) cos ( - )

andl, in they- andz-directions, respectively. Writing the above (51)
equations in the following short form:

Zypo a0, p, )
/A Eg)g4(2) fp(y) dy dz =200, d,p, (52)

—ZZ vy 2oy (05 @, 15 @) (45) 2"

Z..(p,a. ¥, d)

// Ef,z)gq(z)fp(y) dy dz , <m7rly>
As m=M n=N Sin ¢
()

2b

= Z Z Izp/qr Zyz (p7 q, plv (]/) (46) = Z Z 922, sin C(hzlz)

m=1 n=1

L, Bt sty e (05 )ame (-0 5)]

b 2
- Z Z Ly Zey(pr 0, Vs ) (47) - cos (mzypf)sin (mrqu)sin (m;ry) cos (mrz) .

c

c

and (53)
[ BQawidya:

As The summation over andn is truncated ain = M < ~©

= > L, %007, d) (48) andn = N < o, respectively. The truncation & and N is

chosen such that the retained terms provide sufficiently accurate
the system of equations (43) and (44) can be written in the fésults. Criteria for choosing/ and V are presented later.

lowing matrix form: The matrix of (49) is a system of linear equations obtained
(Zolea0) 0] (Bl )y e eg 8 sacer o s
Zypoav.d) Z.(p,ar.d)) \L{F. d) '

However, that boundary condition is violated at one or more
= <“§/(p’ q>> . (49) points to provide an excitation to the system. Herlggp, ¢)
=(p: @) andV,(p, q) are termed the excitation vectors. For a given exci-
The elements of the left-hand-side (LHS) matrix of theation vector, a certain current distribution is maintained on the
above system need not be evaluated at all segmants metallization. That distribution is given by the amplitude coeffi-
of the planex = 0. The coefficients matrix can becients[y(p’, ¢')andl, (¢, ¢'). The point atwhict, (p, q) # 0
evaluated only for the metallized segments of that pla@ﬁvy(n q) # Ois called the gap generator. Hengg(p, ¢) and
since the conduction current is, by definition, zero every’, (p, ¢) are defined as [29]
where else. Using (38)—(41) in (45)—(48), the coefficients

Zyy(p, 0.7, @) Zy(p, ¢, 7', @), Zoy(p, 0,75 ) and 1 iy =y
Z..(p, ¢, V', ¢') are obtained as [26] u(p, @) = 0, elsewhere on the metallization %
Zyy(p, 0, 0, q) 1 iz = 2
" mrl Valp ) = {0, elsewhere on the metallization. (55)
m=M n=N sin C
= Z Z 93(,?,) The gap generator excitation method [30], [29] is a nonphys-
ol o T sin ¢( h l ical mathematical tool to excite the circuit. Another technique
to excite the circuit is the cavity resonance technique [31], [32],
. mn m 2 which, again, is a pure mathematical tool. A coaxial excitation
{Smc <(T hy ) ) sin.c (T B )} method is developed in [22], which has its physical foundation
MAYy \ . (N2 nwz in modeling the feed current of a coaxial line leading to the mi-
1 Co8 ( ) St ( ) cos ( ) sin ( ) crostrip. The end result, however, is independent of the excita-

(50) tion method.
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V. NUMERICAL IMPLEMENTATION Minimizing this error function yields the unknown parameters

in (60), namely/t, I; andg3.. A strength of this theory is that

o ) o it does not require the knowledge8f on the feed transmission

_ Itis important to note the following symmetries in th§jnes to solve the discontinuity problem. From the information

impedance matrix: obtained by the optimization routine, the voltage reflection co-
efficient for the input porf’y, is

A. Matrix Computation and Inversion

Zyy(p, 0.0, ) =2y (¢, 4, 0, q) (56) -

Z(poa, 0 d) =200, ¢ 0 9) (57) Iy = % 928:(Ltds —drer) (62)
and =

Zoy (p7 0, v, q/) =Z,. (p/7 q, p q)_ (58) whered..¢ is the reference plane distance.

) - ) C. Scattering and Impedance Matrices
These symmetries are utilized to reduce the computational ef-

fort in the calculation of matrix elements by about 50% [To be FOr & one-port discontinuity, the scattering parameitgr
exact, the ratio of the number of elements that needs to be ea91ven by the reflection coefficient in (62). For a symmetric
uated to the total number of elements in the matrix is reducBY0-POrt geometry, two excitations are required: an even and
to 0.5 (14 1/N)]. Based on computational experiences, condd excitation. For an even excitation, the gap generators of
puting the matrix elements consumes over 99% of the compig>) &€ equal to one on both ends, and zero everywhere else on
tation time, with the remaining 1% used for the matrix solutiori’® Metallization. For an odd excitation, the gap generator of

These symmetries also reduce the size of the storage array™ IS €qual to one atone end andtt at the other end. Using
half. hese two excitations, two different reflection coefficients are

: dd ized i i
For the case of a narrow strip of metallization along thg°MpPuted:l'** and I'{7. The normalized input impedance

z-axis, and where the discontinuity does not lead to a larfy the even and odd excitations are given by

y-directed current, a subset of this matrix can be used. For 1 4 [even
example, when characterizing a series gap discontinuity in a = ﬁ (63)
thin transmission line, thé, component of current was found o
to be of negligible magnitude compared to thecomponent. godd _ ﬁ (64)
Hence, it is sufficient to only consider the problem B e

o o From microwave-circuit theory, and considering a two-port
(ZZZ (p, D, q )) (Iz (p » q )) = (Vz (p, Q)) (59) network symmetric impedance matrix representation, the
following relationships are obtained:

. even odd
B. Parameters Extraction Ziy = Zin "+ 2y (65)
It is assumed that a uniform transmission line feeds a dis- geven 2_ Zodd
continuity from all ports. For a two-port problem, the longitu- Zio = % (66)

dinal currentd ., and.., on ports 1 and 2 are evaluated using
L.(p', ¢') by atransverse integration. At the input port, on a uniFhe scattering matrikS] is related to the impedance matfix]
form transmission line, an ideal transmission-line current existrough

as long as the operating frequency is below the cutoff frequency

of the shielding cavity. Thus, the current distribution obtained S g Zk - 7% —1 67)
can be fit to a transmission-line current model to obtain the Wz 72 49z +1
scattering parameters. The current distribution obtained behaves 2715
like a transmission-line model away from the excitation point S12 =50 = 72 _ 72 197 +1 (68)
. . . . 11 12 11
and the discontinuity itself (say, by a distancedpf= (A;/4)
from each). ) )
An ideal transmission line current is given by D. Convergence Consideration
Detailed convergence and verification studies were con-
I = IFe 992 4 [ P2 (60) ducted in [24] for the same theory, but for the special case of a

two-layered substrate. These were also conducted in [21] for a
closely related analysis. These criteria were tested and verified

where I'" is the incident current/ " is the reflected current, h ¢ sis for th A d substrat
and g, is the complex propagation constant. The optimizatio:ﬂ € current analysis for the case Ol-layered substrate.
or discontinuity analysis, the convergence criteria depend

routine used for the fitting purpose is L-BFGS-B [33]. The error . - .
function supplied to the routine for minimization is on the modal summation limitd/ and V, the subsection

highest indexe#” and@, the cavity dimensions, b, andc, the
5 »  Subsection lengths and/,, and the subsection wavenumbers
E = [Re (Lonpuied = Loaea) ] F 0 (Leoppiica = Toiaen) ] - h, andh.. These convergence criteria can be summarized as
(61) follows.
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Comparison of 3 obtained via MOM and Dispersion Analysis
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Fig. 4. Propagation constamt (m—!) versus frequencyf (GHz) for a

Comparison of & obtained via MOM and Direct Computation.
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Fig.5. Attenuation constant(m—*!) versus frequency (GHz). The analysis
uniform transmission line. Comparison of the results obtained via the MoRfésented in this paper (i.e., MoM) is compared to that of [26]. All parameters

presented in this paper and that obtained via direct dispersion analysis [Z6f as Per Fig. 4.

MoM computation conducted usin®/ x N = 300 x 300 modes. Direct
dispersion analysis [26] is conducted for two cases:= 2200 modes and
5000 modes. Transmission-line parameters are: width= 0.5 mm, shield

dimensionsa = 6 mm, andb = 1.5 mm. The substrate is comprised of two

layers, one with a thickness 0.2 mm,= 12 andp = 1.2 €2 - m and below it
an insulating layer of thickness 0.2 mm and= 12.

y, . are smaller thar{\,/175), inaccurate results for

1)

2)

3)

4)

5)

the current distribution are again obtained. This time, the
source of error is that the adjacent matrix elements of (49)
have very close values, leading to a reduced numerical ac-
curacy during the matrix solution. This condition is not

The dimensions of the enclosing cavity must be such that  gpsolute. but recommended.

its lowest cutoff frequency is higher than the highest fre-
quency with which the discontinuity is excited. Other-
wise, if the cavity were to resonate at a certain frequency,
coupling could occur between the microstrip circuit and In this section, the current method of moments (MoM) anal-
resonant cavity. ysis is verified using a uniform transmission-line problem. This
Based on extensive numerical testing carried out in [28nalysis is compared to the dispersion analysis for a uniform
choosing the subsection wavenumideysindh . to be ap- transmission line reported in [26]. A discontinuity in the same
proximately equal to the phase constant of the microstripansmission line is then considered. As an example of a discon-
feed lines yield the best results. tinuity, a series gap is studied as per Fig. 1. The discontinuity
To guarantee convergent accurate results, and due to riesults are compared to a quasi-TEM analysis [6].

nature of the overlapping sinusoidal basis functions, theFig. 4 depicts the frequency dependence of the propa-
maximum value fot, and!, is governed by:.l., h,l, < gation constan{? for a uniform transmission line of width
(w/2). W = 0.5 mm and a silicon substrate of thickness 0.4 mm.
Based on computing experience, the relationship betweEie substrate is comprised of two layers, one with a relative
the modal summation limitd/ and/NV and the subsection permittivity ¢, = 12, resistivity p = 1.2 &m, and a thick-
highestindexe# and@ should belM/ > 1.25P andN > ness of 0.2 mm, and beneath it there is an insulating layer
1.25Q). The same criterion was observed in [22] and [34bf relative permittivitye,, = 12. The shielding rectangular
For accurate results, the valuesigfand!. should be waveguide dimensions ate= 6 mm andb = 1.5 mm. First,
such that(\,/175) < [, I. < (\,/25), where), is the computation were conducted using the dispersion analysis for
guided wavelength. If, andl. are greater thaf,/25), a uniform transmission line reported in [26]. Two values for
inaccurate results for the current distribution are obtainéde summation indexX/ were consideredd/ = 2200 modes
due to insufficient sampling points per wavelength. land M = 5000 modes. The two results fully overlap. The

VI. MODEL VERIFICATION AND EXAMPLES
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Re I.(z) and Im I,(z) versus frequency,f.
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Fig. 6. Axial currentl. (=) versus: at f = 9 GHz for an even excitation.

parameters as per Fig. 4.

S11 and S}z versus frequency f.
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Fig. 7. Scattering matrix elemenfs, andS, - versus frequency (GHz). All

parameters are as per Fig. 4.

attenuation constait versus frequency for this transmission

line is shown in Fig. 5.
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Phase of 511 and S versus frequency f.
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All Fig. 8. The phase of;; andS,. of the gap versus frequendy(GHz). All
parameters are as per Fig. 4.

S11 and Sy, versus Gap Length, G.
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Fig. 9. Scattering matrix elemenfs, andS,, versus gap lengtt' (mm) at

f = 20 GHz. All parameters are as per Fig. 4.

Second, the analysis presented here was utilized to study the

same uniform transmission line. The numerical computation is
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Comparison of Full-Wave Analysis and Q-TEM Analysis
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Fig. 10. Deembedded scattering matrix eleme$its and S,» of the gap
versus frequency (GHz). All parameters are as per Fig. 4.

conducted using/ = 300 andN = 300 for a cavity of length

¢ = 20 mm, with subsection discretization 5f= 300 and( =

300. Results are also shown in Figs. 4 and 5. Minor deviations g

guasi-TEM analysis becomes less accurate, as it underestimates
the coupling through the gap.

VIl. CONCLUSION

In this paper, a rigorous theory for analyzing discontinuities
in a shielded transmission-line structures has been developed.
This analysis can model multilayered lossy substrates and
multiconductor structures. The analysis is based on a Green’s
function formulation in the space domain. This was achieved
through an extension of an analytical approach reported earlier
in the literature for a two-layered substrate [24]. A notable
strength of this approach is that the mathematical complexity
of the problem does not greatly increase with the number of
substrate layers. The validity and accuracy of this method
were established through comparison with other modeling
approaches. Convergence criteria are outlined and verified.
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